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In the special Conte truncated expansion approach one obtains different solutions of the
Prigogine–Lefever equation by use of various solutions of a type of Riccati equation,
including the periodic soliton solutions and singular soliton solutions. In order to acquire
conveniently the soliton solutions of the Boussinesq equation, a proper transformation
is applied. Using the special Conte truncated expansion approach yields the known bell-
shape solutions and some new soliton solutions like cot2× sec2, tan2× csec2, tanh2×
sech2, etc. We also study the soliton solutions of the modified Burgers equation (MBE).
Using leading term analysis, we find the exponent is a fraction, i.e.,− 1

2 . Therefore, the
special Conte truncated expansion approach cannot be used directly. A transformation
is first made to them another form of the MBE. Various soliton solutions of MBE are
then presented, including the periodic solutions and singular soliton solutions.

KEY WORDS: truncate expansion; exact solution; Riccati equation.

1. INTRODUCTION

As we know, the Painleve analysis developed by Weiss–Tabor–Carnevale
(WTC) is a powerful tool to find soliton solutions of the nonlinear evolution equa-
tions. Of course, it is also an active method to prove the integrability of some
hierarchies of evolution equations. In 1989, Conte proposed an invariant version
of the WTC approach (Weisset al., 1983). Later, Pickering proposed a nonstandard
truncation approach basing on the Conte invariant Painleve analysis (Conte, 1989).
Similar to Conte’s consideration, Lou acquired some types of expansions to study
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the Painleve properties, which can be used to obtain some new exact solutions of
nonlinear evolution equations (Chen and Lou, 2003; Louet al., 1991; Lou and Ni,
1989). In this paper, we use a special Conte expansion to get some soliton solutions
of three kinds of nonlinear evolution equations. First we look back on Pickering’s
general expansion.

Given an evolution equation, say, in two independent variables

U (9,9x,9t ,9xx,9t t , . . .) = 0, (1)

let

9 =
∞∑
j=0

9 j ξ
j+α, (2)

with arbitrary9i , ξ being determined by

ξx =
N∑

j=0

Sj ξ
j , ξt =

N∑
j=0

Yj ξ
j . (3)

In (3), 2N + 2 functionsSj , Yj satisfy 2N − 1 consistent conditions as follows
Sjt − Yjx +

j+1∑
n=1

n(SnYj+1−n − YnSj+1−n) = 0, j = 0, 1, 2,. . . , N,

N∑
n= j+1−N

(SnYj+1−n − YnSj+1−n) = 0, j = N + 1, . . . , 2N − 2.
(4)

When we takeN = 2 in (3), the general expansion (2) with (3) is just
Pickering’s expansion (Chen and Lou, 2003). TakingN = 2 in (3), we fix the
expansion function as

ξ ≡ g = λ− µT, T =
(
9x

9
− 9xx

29x

)−1

, (5)

with λ, µ being arbitrary constants.
When we takeλ = 0,µ 6= 0, (2) with (5) is reduced back the usual Conte

expansion. In terms of the special selection (5), (3) becomes

gx = µ+ 1

2µ
sg2, gt = −c+ cxg− 1

2µ
(cxx + cs)g2, (6)

wheres= 3
2(9xx

9x
)2− 9xxx

9x
, c ≡ − 9t

9x
. It is easy to verify that (6) is the Mobius

transformation invariants (Chen and Lou, 2003). The corresponding compatibility
condition (4) reduces to a singe one

st = −cxxx− 2scx − sxc.
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For the convenience of calculations, takingu = 1 in (6), we have

gx = 1+ 1

2
sg2, gt = −c+ cxg− 1

2
(cxx + cs)g2, (7)

which is a type of Riccati equation.
The expasion form (2) with (7) is called the special Conte truncated expansion.

In particular, takingc ands are constants, (7) reduces to

gx = 1+ 1

2
sg2, gt = −c− 1

2
csg2, (8)

which has the following solutions. g =
√

2
s tan

(√
s
2(x − ct)

)
, s > 0,

g =
√

2
−s tanh

(√
−s
2 (x − ct)

)
, s < 0,

 g =
√

2
s cot

(√
s
2(−x + ct)

)
, s > 0,

g =
√

2
−s coth

(√
−s
2 (x − ct)

)
, s < 0,

(9)

2. SOME APPLICATION

In what follows, we apply the expansion (2) with (8), (9) to three kinds of
nonlinear evolution equations, which are the Prigogine–Lefever (PL) equation,
the Boussinesq equation and the modified Burgers equation (MBE), to obtain
soliton solutions. Using directly the Conte truncated expansion for the PL equa-
tion produces some new periodic solitons and singular soliton solutions. In order
that soliton solutions of the Boussinesq equation can be obtained conveniently,
a proper transformation is first applied. It is remarkable that solution forms like
cot2× sec2, tan2×csec2, tanh2× sech2, etc. are found for this equation. We find
that the special Conte truncated expansion can not be used for the MBE. Therefore
we make an appropriate transformtion. Then we have various soliton solutions to
the MBE. The approach presented in this paper can be used generally.

Example 1. Prigogine and Lefever proposed a mathematical model in 1968
(Pickering, 1993), briefly called the PL equation{

ut = Kuxx + u2v − Bu,

vt = Kvxx − u2v + Bu,
(10)

whereB is a constant,K denotes a dispersive coefficient. The system (10) systemat-
ically describes a biochemistry model (Weisset al., 1983). Letu =∑∞j=0 u j q j+α,
v =∑∞j=0 v j q j+α be a solution of (10), then the leading terms areu0qα, v0qβ .
Balancing the linear terms of the highest orderuxx, vxx with the nonlinear terms
in Eq. (10) yields thatα − 2= 2α + β, β − 2= 2α + β, i.e.,α = −1,β = −1.
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Therefore, let

u = u0

q
+ u1+ u2q, v = v0

q
+ v1+ v2q, qx = 1+ 1

2
sq2, qt = −c− 1

2
csq2,

(11)

whereu0, u1, u2, v0, v1, v2 are to be determined. It is easy to have that

ut = u0c
q2 + 1

2u0cs− u2c− 1
2csu2q2,

uxx = 2u0
q3 + su0

q + u2sq+ 1
2u2s2q3,

vt = v0c
q3 + 1

2v0cs− v2c− 1
2csv2q2,

vxx = 2v0
q3 + sv0

q + v2sq+ 1
2v2s2q3.

(12)

Substituting (12) and (11) into (10), and setting all the coefficients of different
powers ofq to zero give rise to a set of overdetermined equations

2u0K + u2
0v0 = 0, u0c = 2u0u1v0+ u2

0v1,

su0K + u2
1v0+ 2u0v0u2+ 2u0u1v1+ u2

0v2− Bu0 = 0,
1
2u0cs− u2c = u2

1v1+ 2u0u2v1+ 2u0u1v2− Bu1+ 2u1u2v0 = 0,

Ku2s+ u2
2v0+ 2u1u2v1+ u2

1v2+ 2u0u2v2− Bu2 = 0,

− 1
2csu2 = u2

2v1+ 2u1u2v2, 1
2 Ku2s2+ u2

2v2 = 0,

2v0K − u2
0v0 = 0, v0c = −2u0u1v0− u2

0v1,

sv0K − u2
1v0− 2u0v0u2− 2u0u1v1− u2

0v2+ Bu0 = 0,
1
2v0cs− v2c = −u2

1v1− 2u1u2v0− 2u0v1u2+ Bu1− 2u1v2u0 = 0,

Kv2s− u2
2v0− 2u1u2v1− u2

1v2− 2u0u2v2+ Bu2 = 0,

− 1
2scv2 = −u2

2v1− 2u1u2v2, 1
2 Kv2s2− u2

2v2 = 0.

(13)

In the case ofu0 6= 0, v0 6= 0, solving Eqs. (13) gives

u0 =
√

2K ε, v0 = −
√

2K ε, u2 =

√

K
2 s, s > 0,

−
√

K
2 s, s < 0,

v2 =
−

√
K
2 s, s > 0,√

K
2 s, s < 0,

whereε = ±1.

Whens > 0, we haveε = 1, v1 = 0, u1 = −
√

2Kc
4K ; ε = −1, v1 = −

√
2Kc
4K ; u1 = 0.

Whens < 0, we haveu1 = − c
4
√

2K ε
+ c

4
√

2K
, v1 = c

2
√

2K ε
+ c

2
√

2K
.

Case 1. Whens > 0, we have the following periodic soliton solutions

(i)

{
u = √Kscot

(√
s
2(x − ct)

)+√Ks tan
(√

s
2(x − ct)

)− √2Kc
2K ,

v = −√Kscot
(√

s
2(x − ct)

)−√Ks tan
(√

s
2(x − ct)

)
,
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(ii)

{
u = −√Kscot

(√
s
2(x − ct)

)+√Ks tan
(√

s
2(x − ct)

)
,

v = √Kscot
(√

s
2(x − ct)

)−√Ks tan
(√

s
2(x − ct)

)− √2Kc
2K ,

(iii)

{
u = √Ks tan

(√
s
2(x − ct)

)+√Kscot
(√

s
2(x − ct)

)− √2Kc
4K ,

v = −√Ks tan
(√

s
2(x − ct)

)−√Ks tan
(√

s
2(x − ct)

)
,

(iv)

{
u = −√Ks tan

(√
s
2(−x + ct)

)+√Kscot
(√

s
2(−x + ct)

)
,

v = √Ks tan
(√

s
2(−x + ct)

)−√Ks tan
(√

s
2(x − ct)

)− √2Kc
2K .

Case 2. Whens < 0, we obtain the singular soliton solutions as follows

(v)

 u = √−Ksε coth
(√

−s
2 (x − ct)

)
+√−Ks tanh

(√
−s
2 (x − ct)

)
− c

4
√

2K ε
,

v = √−Ksε coth
(√

−s
2 (x − ct)

)
−√−Ks tanh

(√
−s
2 (x − ct)

)
+ c

2
√

2K ε
+ c

2
√

2K
,

(vi)

 u = √−Ksε tanh
(√

−s
2 (x − ct)

)
+√−Kscoth

(√
−s
2 (x − ct)

)
− c

4
√

2K ε
+ c

4
√

2K
,

v = −√−Ksε tanh
(√

−s
2 (x − ct)

)
−√−Kscoth(

√
−s
2 (x − ct))+ c

2
√

2K ε
+ c

2
√

2K
.

In the case ofu0 = 0, v0 = 0, solving Eq. (13) yields

u1,2 = c

3
√

2K
±
√

c2

9K
+ B− Ks

3
, v1,2= − c

3
√

2K
± 2

√
c2

9K
+ B− Ks

3
,

u2 =

√

K
2 s, s > 0,

−
√

K
2 s, s < 0,

v2 =
{− Ks√

2K
, s > 0,

Ks√
2K

, s < 0.

Similarly, we obtain the following soliton solutions of Eq. (10)

(vii)

u = c
3
√

2K
±
√

c2

9K + B−Ks
3 +√Ks tan

(√
s
2(x − ct)

)
,

v = − c
3
√

2K
± 2

√
c2

9K + B−Ks
3 −√Ks tan

(√
s
2(x − ct)

)
, s > 0,

(viii)

u = c
3
√

2K
±
√

c2

9K + B−Ks
3 +√Kscot

(√
s
2(x − ct)

)
,

v = − c
3
√

2K
± 2

√
c2

9K + B−Ks
3 −√Kscot

(√
s
2(x − ct)

)
, s > 0,

(ix)

u = c
3
√

2K
±
√

c2

9K + B−Ks
3 −√−Ks tanh

(√
s
2(x − ct)

)
,

v = − c
3
√

2K
± 2

√
c2

9K + B−Ks
3 +√−Ks tanh

(√
s
2(x − ct)

)
, s < 0,

(x)

u = c
3
√

2K
±
√

c2

9K + B−Ks
3 −√−Kscoth

(√
s
2(x − ct)

)
,

v = − c
3
√

2K
± 2

√
c2

9K + B−Ks
3 +√−Kscoth

(√
s
2(x − ct)

)
, s < 0.
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Example 2. The Boussinesq equation

qtt = qxx + 3(q)2
xx + qxxx (14)

was introduced by Boussinesq in 1871 to describe the propagation of long waves
in shallow water (Weiss, 1985). This equation also arises in several other physical
applications, including one-dimensional nonlinear string and ion sound wave in
plasma. Therefore, it is of an important equation. Its some exact solutions and prop-
erties were found (Zhang, Y. F. and Zhang, H. Q., 2000). In this paper, some known
and unknown solutions are given. To our best knowledge, the kinds of solutions
like cot2× sec2, coth2× sech2, etc. are not discovered. To use conveniently the
Conte expansion approach to get new soliton solutions for (14), a transformation
is first applied to it.

Let q = ux and insert it into (14), we have

utt = uxx + 6uxuxx + uxxxx. (15)

Setu = 6∞j=0u j v j+α, then a leading term is expressed asu0vα. Similar to Eq. (10),
we find thatα = −1. Hence, let

u = u0

v
+ u1+ u2v, vt = −c− 1

2
csv2, vt = 1+ 1

2
sv2. (16)

Inserting (16) into (15) and setting all the coefficient powers ofv to zero yield the
following over-determined equations
−12u2

0 + 24u0 = 0,−12u2
0s+ 12u0u2 + 20u0s+ 2u0 = 2u0c2,

u0c2s= u0s− 3u2
0s2 + 6u0u2s+ 4u0s2, u2c2s= u2s− 3u0u2s2 + 6u2

2s+ 4u2s2,
1
2u2c2s2 = 1

2u2s2 − 3
2u0u2s3 + 6u2

2s2 + 5u2s3, u2s4 + u2
2s3 = 0. (17)

Case 1. Whenu0 = 0, we have from (17) thatu2 = −s, c2 = 1− 2s, u1 is an
arbitrary solution of (15). Thus, we obtain the periodic solutions and the bell-shape
soliton solutions, respectively{

q = −s sec2
(√

s
2(x − ct)

)
,

q = −s c sec2
(√

s
2(−x + ct)

)
, s > 0,

{
q = ssech2

(√− s
2(x − ct)

)
,

q = −s csech2
(√− s

2(x − ct)
)

, s < 0,

Case 2. Whenu0 = 2, in terms of (17), we haveu2 = −s, c2 = 1− 8s, u1 is
arbitrary. Thus, we give the following soliton solutions of Eq. (14){

q = −s cot2
(√

s
2(x − ct)

)
sec2

(√
s
2(x − ct)

)− s sec2
(√

s
2(x − ct)

)
, s > 0,

q = −s tan2
(√

s
2(−x + ct)

)
c sec2

(√
s
2(−x + ct)

)+ s c sec2
(√

s
2(−x + ct)

)
, s > 0,{

q = −scoth2
(√
−s
2 (x − ct)

)
csech2

(√
−s
2 (x − ct)

)
+ ssech2

(√
−s
2 (x − ct)

)
, s < 0,

q = −s tanh2
(√
−s
2 (x − ct)

)
sech2

(√
−s
2 (x − ct)

)
+ s csech2

(√
−s
2 (x − ct)

)
, s < 0.
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Example 3. Consider the modified Burgers equation (Lee-Bapty and Crighton,
1987)

ut + qu2ux + puxx = 0, (18)

where p, q are constants. If we letu = 6∞j=0u j v j+α, then using leading term

analysis, weα = − 1
2. Thus, we can not use directly the Conte expansion to solve

Eq. (18). But letu = √w and substitute it into (18), we have

wwt + qw2wx + p

(
wwxx − 1

2
w2

x

)
= 0. (19)

Setw = 6∞j=0w j v j+α, we can find thatα = −1 (integer). Thus, let

w = w0

v
+ w1+ w2v, vt = −c− 1

2
csv2, vx = 1+ 1

2
sv2. (20)

Substituting (20) into (19) and vanishing the coefficients of the different powers
of v leads to

w0
(
2pw0 − qw2

0

)− p
2 w2

0 = 0, w2
0 (c− w1q)+ w1

(
2pw0 − qw2

0

) = 0,

w0
(
w0 ps− 1

2w2
0qs

)+ w1 (w0c− w0w1q)+ w2
(
2pw0 − qw2

0

)+ pw0w2 − 1
2 psw2

0 = 0,

w0
( 1

2w0cs− w2c+ qw1w2 − 1
2w0w1qs

)+ w1
(
w0 ps− 1

2w2
0qs

)+ w2(w0c− w0w1q) = 0)

w0
(
w2

2q + w2 ps
)+ w1

( 1
2w0cs− w2c+ qw1w2 − 1

2qsw0w1
)

+w2
(
w0 ps− 1

2w2
0qs

)+ 1
2 psw0w2 − p

2

(
w2 − 1

2w0s
)2 = 0,

w0
( 1

2qsw1w2 − 1
2w2cs

)+ w1
(
w2

2q + w2 ps
)+ w2

( 1
2w0cs− w2c+ qw1w2 − 1

2qsw0w1
) = 0,

1
2w0

(
w2

2qs+ w2 ps2
)+1

2w1 (qsw1w2 − csw2)+ w2
(
w2

2q + w2 ps
)− 1

2 psw2
2 + 1

4 ps2w0w2= 0,

w2
(
qsw1w2 − w2 ps2

)+ w1
(
w2

2qs+ w2 ps2
) = 0, w2

(
w2

2qs+ w2 ps2
)− p

4 w2
2s2 = 0.

(21)

Whenw0 6= 0, we obtain a set of solutions of (21):w0 = 3p
2q , w1 = 3c

2q , w2 =
−3ps

4q , where 8c2+ p2s= 0. Hence, whens > 0, we have the periodic solutions
of (19)

w = 3p

2q

√
s

2
cot

(√
s

2
(x − ct)

)
− 3ps

4q

√
2

s
tan

(√
s

2
(x − ct)

)
+ 3c

2q
, (22)

w = 3p

2q

√
s

2
tan

(√
s

2
(−x + ct)

)
− 3ps

4q

√
2

s
cot

(√
s

2
(−x + ct)

)
+ 3c

2q
. (23)

Whens < 0, the singular solutions are obtained as follows

w = 3p

2q

√−s

2
coth

(√−s

2
(x − ct)

)
− 3ps

4q

√
−2

s
tanh

(√−s

2
(x − ct)

)
+ 3c

2q
,

(24)
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w = 3p

2q

√−s

2
tanh

(√−s

2
(x − ct)

)
− 3ps

4q

√
−2

s
coth

(√−s

2
(x − ct)

)
+ 3c

2q
.

(25)

In the case ofw0 = 0, we have a set of solutions of (21)w1 = 3c
2q , w2 =

− 3ps
4q , c2+ p2s= 0. Similar to (22)–(25), we also have the exact solutions of

(19). Here we omit them. Thus, using the transformationu = √w can obtain the
corresponding exact solutions of Eq. (18).

Remark. Zhang (2001) only obtained the part solution of (24), i.e., the form

solution likew = − 3ps
4q

√
− 2

s tanh(
√− s

2(x − ct))+ 3c
2q was presented. Obviously,

here we extend largely the results in Zhang (2001).
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