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Conte Truncated Expansion and Applications
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In the special Conte truncated expansion approach one obtains different solutions of the
Prigogine—Lefever equation by use of various solutions of a type of Riccati equation,
including the periodic soliton solutions and singular soliton solutions. In order to acquire
conveniently the soliton solutions of the Boussinesq equation, a proper transformation
is applied. Using the special Conte truncated expansion approach yields the known bell-
shape solutions and some new soliton solutions liké gate, tarf x cse@, tantf x

sech, etc. We also study the soliton solutions of the modified Burgers equation (MBE).
Using leading term analysis, we find the exponentis a fraction,—i.%.,'l’herefore, the
special Conte truncated expansion approach cannot be used directly. A transformation
is first made to them another form of the MBE. Various soliton solutions of MBE are
then presented, including the periodic solutions and singular soliton solutions.

KEY WORDS: truncate expansion; exact solution; Riccati equation.

1. INTRODUCTION

As we know, the Painleve analysis developed by Weiss—Tabor—Carnevale
(WTC) is a powerful tool to find soliton solutions of the nonlinear evolution equa-
tions. Of course, it is also an active method to prove the integrability of some
hierarchies of evolution equations. In 1989, Conte proposed an invariant version
ofthe WTC approach (Weist al, 1983). Later, Pickering proposed a nonstandard
truncation approach basing on the Conte invariant Painleve analysis (Conte, 1989).
Similar to Conte’s consideration, Lou acquired some types of expansions to study
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the Painleve properties, which can be used to obtain some new exact solutions of
nonlinear evolution equations (Chen and Lou, 2003; &bal.,, 1991; Lou and Ni,
1989). In this paper, we use a special Conte expansion to get some soliton solutions
of three kinds of nonlinear evolution equations. First we look back on Pickering’s
general expansion.

Given an evolution equation, say, in two independent variables

U(\Da lIJXl \Dtl \I'[X)(y \Ilt'[y .. ) = Oy (l)
let
W= Wit )
j=0

with arbitraryy;, & being determined by

N N
=) S, &=) Y. (3)
j=0 j=0

In (3), 2N + 2 functionsS;, Y; satisfy 2N — 1 consistent conditions as follows

j+1
Sjt - ij + Z n(S1Yj+1—n - YnSj+l—n) = 0. J = 0, 1, 2,~ ... N
n=1
g | (4)
Z (S]Yj+1,n—YnSj+1,n)=0,J = N+1,...,2N_2.

n=j+1-N

When we takeN = 2 in (3), the general expansion (2) with (3) is just
Pickering’s expansion (Chen and Lou, 2003). TakMg= 2 in (3), we fix the
expansion function as

Wy Wy )‘1' )

=g=1—uT, T=
§=0=1—u (szx

with A, u being arbitrary constants.
When we take. = 0, u # 0, (2) with (5) is reduced back the usual Conte
expansion. In terms of the special selection (5), (3) becomes

1 1
O =1+ =—SF, G =—C+Cg— —(Cxx + €7, (6)
21 21
wheres = 3(32)? — %, ¢ = . It is easy to verify that (6) is the Mobius

transformatlon |nvar|ants (Chen and Lou, 2003). The corresponding compatibility
condition (4) reduces to a singe one

S = —Cxxx — ZSCX — &C.
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For the convenience of calculations, taking= 1 in (6), we have

1 1
G =1+ 55¢, G = —C+0xg— 5(Cuc +CIG, (7)

which is a type of Riccati equation.
The expasion form (2) with (7) is called the special Conte truncated expansion.
In particular, takingc ands are constants, (7) reduces to

1 1
oy =1+ Esgz, O = —C— Ecsgz, (8)

which has the following solutions.

g:\/gtan(\/g(x—ct)),s> 0, g:\/gcot(\/g(—x+ct)),s> 0,
g= \/;Stanh(\/%(x — ct)), s<0, |g= Ecoth(@(x — ct)), s <0,

9)

2. SOME APPLICATION

In what follows, we apply the expansion (2) with (8), (9) to three kinds of
nonlinear evolution equations, which are the Prigogine—Lefever (PL) equation,
the Boussinesq equation and the modified Burgers equation (MBE), to obtain
soliton solutions. Using directly the Conte truncated expansion for the PL equa-
tion produces some new periodic solitons and singular soliton solutions. In order
that soliton solutions of the Boussinesq equation can be obtained conveniently,
a proper transformation is first applied. It is remarkable that solution forms like
cof x seé, tar? xcseé, tanif x sech, etc. are found for this equation. We find
that the special Conte truncated expansion can not be used for the MBE. Therefore
we make an appropriate transformtion. Then we have various soliton solutions to
the MBE. The approach presented in this paper can be used generally.

Example 1. Prigogine and Lefever proposed a mathematical model in 1968
(Pickering, 1993), briefly called the PL equation

U = Kuyx + U?v — Bu,

10
Vi = Kvyy — UV + Bu, (10)

whereB isaconstant denotes adispersive coefficient. The system (10) systemat-
ically describes a biochemistry model (Weitsl, 1983). Letu = Z‘j’o:o uj qite,

V= Z‘j"’zo vjq!*® be a solution of (10), then the leading terms agg®, voq”.
Balancing the linear terms of the highest ordgy, v« with the nonlinear terms

in Eq. (10) yields thatr —2 =20+ 8,8 —2=2a + B,i.e.,a = -1, = —1.
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Therefore, let

u V 1 1
u= H°+U1+Uzq, V=a°+vl+qu, G =1+ 5S¢, G = —c— oS¢,

(11)
whereug, Uy, Uy, Vo, V1, V2 are to be determined. It is easy to have that
U = & + Tugcs — upc — Leswg?,
Usx = 28 + 20 4 50+ 3Up5%0°,
VoC 1 1 2 (12)
Vi = g5 + 3V0CS — Vo€ — 50507,

Vix = 28 + 20 4 550+ 3V55°0°.
Substituting (12) and (11) into (10), and setting all the coefficients of different
powers ofg to zero give rise to a set of overdetermined equations
2UgK + U3Vg = 0, UgC = 2UgU1Vo + U3V,
SUK + UfVg + 2UgVoUz + 2UgUpVy + U3V, — BUg = 0,
%uocs — Uyt = u%vl + 2UgUyVy + 2uUguqVe — Bug + 2uusvg = 0,
K UzS + U3Vo + 2U1UpVy + U2V, + 2UgUpV — Bup = 0,
—2esty = udvy + 2u3UnVo, 3K UpS? + Udv, =0,

2VoK — uvo = 0,VoC = —2UgU1Vo — U3V, (13)

SWK — u2vg — 2UgVUp — 2UgU1Vq — UV, + Bug = 0,

ZV0CS — Vo€ = —U3Vy — 2U3UsVg — 2UgVilz 4+ Buy — 2u3vpug = 0,

K VS — U3Vg — 2U1UaV; — U2V, — 2UgUpV + Bup = 0,

—2SCW = —U3Vy — 2U3UpVy, 3K VpS? — Udv, = 0.

In the case ofiy # 0, vg # 0, solving Egs. (13) gives
UQ:\/RE, V0=—\/R6, Uy = %S, $>0. Vo = _\/%75, s>0,

—\/?s,s<0, %s, s<0,

wheree = +1.
Whens > 0,wehave = 1,v; = 0,uy = —¥2K¢ e = —1,vy = —¥2K¢u; = 0.
Whens < 0, we haveu; = —4—\/2?6 + 4\/—02?"’1 = ﬁ + %

Case 1. Whens > 0, we have the following periodic soliton solutions

0 u = vKscot(,/3(x — ct)) + VKstan(,/3(x — ct)) — ¥2K¢,
v =—+vKscot(,/3(x — ct)) — vVKstan(,/3(x — ct)),
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[u=—VKscot(/S(x - ct)) + vVKstan(,/3(x — ct))
® {v = v/Kscot(/3(x — ct)) — vKstan(,/3(x — ct)) — 22}2@
G { u = vKstan(y/3(x — ct)) + vVKscot(/3(x — ct)) — ¥2Ke,

v =—vKstan(,/3(x — ct)) — vVKstan(,/3(x —ct)),

_[u=—VKstan(\/3(—x + ct)) + VKscot(,/3(—x +ct)) ,

™) {v = VKstan(,/3(—x + ct)) — v/Kstan(,/3(x — ct)) — 22K

Case 2. Whens < 0, we obtain the singular soliton solutions as follows

u=+—Kse coth( S(x — ct)) + J——I<stanh( S(x— ct)) T
) v =+—Kse coth(\/g(x — ct)) - J/—Ks tanh( F(x— ct)) s +
u=+—Kse tanh(f(x - ct)) + \/——Kscoth< 2(x— ct)) W Td
V) = —/—Kse tanh( 2(x— ct)) - \/Tcoth(\/%(x — e+ 5o + 5

[
22K’

In the case ofip = 0, vo = 0, solving Eq. (13) yields

u Ks B c Lo 02+B—Ks
L2 3«/2K T 3/2K VoK 3
{,/75, s> 0, { J2_,5>0,
Uz = V2 = Ks <
0.
—/5s,s<0, S

NS
Similarly, we obtain the following soliton solutions of Eq. (10)

wi) U=t &+ Bk 4 Kstan(\/S(x —ct)),
c? B— Ks
V=— w_iz 9K+ —v/Kstan(/3(x —ct)), s > 0,

(vii sm + 25 + VKscot(/3(x — c)),
—375% §;+BKS VKscot(/3(x —ct)), s > 0,

(ix){ = s £V H IR KsEmRK ).

V__3mi2 %‘FB_TKS+«/——Stanh(\/g(X—ct)),s<o,

(X): = oo+ 1 B /RS coth(y/§(x - o),
V=—T°2?j:2m+\/——l<scoth(\/§(x—ct)) s<0.
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Example 2. The Boussinesq equation

Gt = Oxx + 3(Q)§x =+ Oxxx (14)

was introduced by Boussinesq in 1871 to describe the propagation of long waves
in shallow water (Weiss, 1985). This equation also arises in several other physical
applications, including one-dimensional nonlinear string and ion sound wave in
plasma. Therefore, itis of an important equation. Its some exact solutions and prop-
erties were found (Zhang, Y. F. and Zhang, H. Q., 2000). In this paper, some known
and unknown solutions are given. To our best knowledge, the kinds of solutions
like cot x se&, cot? x secH, etc. are not discovered. To use conveniently the
Conte expansion approach to get new soliton solutions for (14), a transformation
is first applied to it.

Letq = uyx and insert it into (14), we have

Ut = Uxx + 6uxuxx + Uxxxx- (15)
Setu = Z}";Oujv”“, then aleading term is expressedigg®. Similar to Eq. (10),
we find thatoe = —1. Hence, let

u 1 1
u= 70 FUp UV, Vp=-—C— Ecsvz, v =1+ Esvz. (16)
Inserting (16) into (15) and setting all the coefficient powers tif zero yield the
following over-determined equations
—12U(2) + 24up = 0, —12UgS + 12ugus + 20uUgS + 2ug = 2U0C2,
UoC?S = UpS — 3U3S? + BUgU2S + 4UgS?, UpC?S = UpS — 3UgUaS? + 6U3S + 4U,pS?,

$uxc?s? = 2ups? — 3ugUps® + 6U3S? + 5U,S°, Ups® + u3s® = 0. (17)

Case 1. Whenug = 0, we have from (17) thai, = —s, ¢ = 1 — 2s, uy is an
arbitrary solution of (15). Thus, we obtain the periodic solutions and the bell-shape
soliton solutions, respectively

q=—sseé(,/3(x—ct)), q = sseck (,/=3(x —ct)),
q=-scseé(,/3(-x+ct)),s>0, | q=—scseck (/—5(x —ct)),s <0,

Case 2. Whenug = 2, in terms of (17), we hava, = —s, ¢ =1 — 8s, Uy is
arbitrary. Thus, we give the following soliton solutions of Eq. (14)

q = —scof (,/3(x —ct)) se (/3(x — ct)) — s seé (,/3(x —ct)), s>0,

{ q = —star? (,/3(—x+ct)) c seé (,/3(—x +ct)) +scsed (,/5(—x +ct)), s>0,
q= —scott?( S(x— ct)) csecht ( S(x — ct)) + ssech ( S(x - ct)) , s<0,
q= —stanf?( S(x— ct)) secﬁ( S(x - ct)) + s csecl ( S(x— ct)) ,s<0.
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Example 3. Consider the modified Burgers equation (Lee-Bapty and Crighton,
1987)

Ut + qU2Uy 4 PUyy = 0, (18)

where p, q are constants If we latt = 22,u; vi*e then using leading term
analysis, wex = —5 Thus we can not use directly the Conte expansion to solve
Eq. (18). But letu = \/v_v and substitute it into (18), we have

1
WW; 4+ qW2wy + p (WWXX - EW)2(> =0. (19)
Setw = E72 W, vite we can find tha&r = —1 (integer). Thus, let

W 1 1
W= 70 4 Wy WV, Vi=-—C— Ecsvz, vy =1+ E5\12. (20)

Substituting (20) into (19) and vanishing the coefficients of the different powers
of v leads to
wo (2pwo — qw3) — Swg = 0, w3 (c — w10) + w1 (2pwo — qw3) =0,
Wo (Wops — 3W3Qs) + Wi (WoC — Wow1d) + Wz (2pWo — qWZ) + pwowz — 3 pswg = O,
wo (3wocs — wac + qwiw, — Swowigs) + wy (Wops — Sw3gs) + wa(woc — wowiq) = 0)
Wo (W2q + w2 ps) + w (2woes — wac + qwiw, — 2gsuwow:)
+w; (wops — 2w2qs) + 3 psvewz — B (wz — Lwos)® =0,
wo (3aswiwz — 3wCs) +wi (W3q + W2 ps) + Wz (3WoCs — WaC + qwiwz — 3qsupwa) = 0,
2w (W3gs+ w2 ps?) +3w (QSWiwz — CSWp) + W2 (W3Q + W2 ps) — 3 psw§ + £ pwow,= 0,
w2 (gswiwz — W2 ps?) 4+ w1 (W3gs + w2 ps?) = 0, wz (W2gs+ waps?)— Swis? = 0.

(21)

Whenw, # 0, we obtain a set of solutions of 21y = 22, wy = q , Wy =

‘fqps, where &2 + p?s = 0. Hence, whers > 0, we have the periodic solutions
of (19)

w = g—g gcot(\/g(x — ct)) — %’@tan(@(x — ct)) + :—: (22)
W= tan(f( x+ct)> \/7 ot(f( x+ct)) + TR (23)

Whens < 0, the singular solutions are obtained as follows

o) o)

(24)
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) (o) 5

In the case ofwvg = 0, we have a set of solutions of (2&) = @ , Wo =
i’;s, c? 4 p?s = 0. Similar to (22)—(25), we also have the exact solutlons of

(19). Here we omit them. Thus, using the transformatioa ./w can obtain the
corresponding exact solutions of Eq. (18).

Remark. Zhang (2001) only obtained the part solution of (24), i.e., the form
3ps

solution likew = —E,/—gtanh( /=3(x — ct)) + % was presented. Obviously,

here we extend largely the results in Zhang (2001).
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